Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4,5-Diaza-9H-fluoren-9-vlidene)-4methoxvaniline

Hui Cang,^a* Jin-Fa Bian,^b Si-Qing Wang^c and Jin-Tang Wang^c

^aChemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China, ^bDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China, and ^cDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: canghui@ycit.edu.cn

Received 11 June 2010; accepted 16 June 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.081; wR factor = 0.212; data-to-parameter ratio = 12.9.

In the title compound, C₁₈H₁₃N₃O, the diazafluorene ring system is almost coplanar (r.m.s. deviation = 0.0640 Å) and subtends an angle of $61.5 (4)^{\circ}$ with the plane of the methoxysubstituted benzene ring. In the crystal structure, pairs of C-H···O hydrogen bonds link molecules into centrosymmetric dimers parallel to the *ab* plane. Molecules are also stacked in an obverse fashion along the c axis by a variety of $\pi - \pi$ interactions with centroid-centroid distances in the range 3.557 (2)-3.921 (2) Å.

Related literature

For the use of the title compound in the synthesis of complexes with interesting photochemical properties and for the synthesis, see: Wang & Rillema (1997). For reference bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C ₁₈ H ₁₃ N ₃ O	V = 1400.5 (5) Å ³
$M_r = 287.31$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 8.3070 (17) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 12.839(3) Å	$T = 298 { m K}$
c = 13.233 (3) Å	$0.30 \times 0.10 \times 0.05 \text{ mm}$
$\beta = 97.12 \ (3)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.974, \ T_{\max} = 0.996$ 2678 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.081$	48 restraints
$wR(F^2) = 0.212$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ Å}^{-3}$
2498 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
193 parameters	

2498 independent reflections

 $R_{\rm int} = 0.025$

reflections

1599 reflections with $I > 2\sigma(I)$

3 standard reflections every 200

intensity decay: none

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C12-H12A\cdots O^{i}$	0.93	2.42	3.337 (6)	169
Symmetry code: (i) -	$x_{1} - y + 1, -z + 1$	1.		

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5020).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377-12390.

supplementary materials

Acta Cryst. (2010). E66, o1804 [doi:10.1107/S1600536810023275]

N-(4,5-Diaza-9H-fluoren-9-ylidene)-4-methoxyaniline

H. Cang, J.-F. Bian, S.-Q. Wang and J.-T. Wang

Comment

N-(5*H*-cyclopenta[1,2 - b:5,4 - b']dipyridin-5-ylidene)-4-methoxyaniline and its derivatives are an important class of ligands, being utilized to synthesize complexes with interesting photochemical properties (Wang & Rillema, 1997). Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The diazafluorene rings are almost coplanar with an r.m.s. deviation 0.0640 Å and this plane is inclined to the plane of the C2 \cdots C7 benzene ring by 61.5 (4)°.

In the crystal structure C—H···O hydrogen bonds link molecules into centrosymmetric dimers parallel to the *ab* plane, Table 1. An extensive system of π - π contacts stacks molecules in an obverse fashion down the *c* axis, Fig. 2, with *Cg*1···*Cg*1 = 3.921 (2) Å, *Cg*2···*Cg*2 = 3.921 (2) Å and *Cg*1···*Cg*2 = 3.557 (2) Å. Symmetry operations 1/2-*X*, 1/2+Y, 1/2-*Z*; 3-*X*, -Y, -*Z*; *Cg*1 and *Cg*2 are the centroids of the C10,C9,C13,N2,C12,C11 and C18,C8,C9,C13,C14 rings, respectively.

Experimental

The title compound was synthesized by a method reported in literature (Wang & Rillema, 1997). Crystals were obtained by dissolving the compound (2.0 g, 6.96 mmol) in ethyl acetate(50 ml), and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic 0.96Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ atoms

Figures

Fig. 1. The structure or (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram for (I). Hydrogen bonds are drawn as dashed lines.

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections

F(000) = 600 $D_{\rm x} = 1.363 \text{ Mg m}^{-3}$

 $\theta = 9-12^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KBlock, colourless $0.30 \times 0.10 \times 0.05 \text{ mm}$

N-(4,5-Diaza-9H-fluoren-9-ylidene)-4-methoxyaniline

Crystal	data
---------	------

$C_{18}H_{13}N_{3}O$
$M_r = 287.31$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 8.3070 (17) Å
<i>b</i> = 12.839 (3) Å
<i>c</i> = 13.233 (3) Å
$\beta = 97.12 \ (3)^{\circ}$
$V = 1400.5 (5) \text{ Å}^3$
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	1599 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.025$
graphite	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
$\omega/2\theta$ scans	$h = -9 \rightarrow 9$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 15$
$T_{\min} = 0.974, T_{\max} = 0.996$	$l = 0 \rightarrow 15$
2678 measured reflections	3 standard reflections every 200 reflections
2498 independent reflections	intensity decay: none

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.081$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.212$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 5.P]$ where $P = (F_o^2 + 2F_c^2)/3$
2498 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
193 parameters	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
48 restraints	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0	0.1797 (4)	0.1191 (2)	0.5460 (2)	0.0455 (8)
N1	-0.4360 (4)	0.2396 (3)	0.3622 (3)	0.045
C1	0.2903 (6)	0.0674 (4)	0.4883 (4)	0.0580 (14)
H1B	0.3927	0.0584	0.5298	0.087*
H1C	0.3054	0.1085	0.4296	0.087*
H1D	0.2473	0.0005	0.4668	0.087*
N2	-0.4715 (5)	0.6162 (3)	0.3850 (3)	0.0417 (9)
C2	0.0291 (5)	0.1441 (3)	0.4969 (3)	0.0354 (10)
C3	-0.0260 (5)	0.1213 (3)	0.3959 (3)	0.0426 (11)
H3A	0.0405	0.0853	0.3563	0.051*
N3	-0.7987 (5)	0.5270 (3)	0.2939 (3)	0.0498 (11)
C4	-0.1786 (5)	0.1517 (4)	0.3544 (3)	0.0425 (11)
H4A	-0.2162	0.1317	0.2881	0.051*
C5	-0.2786 (5)	0.2115 (3)	0.4081 (3)	0.0337 (10)
C6	-0.2233 (6)	0.2327 (4)	0.5093 (3)	0.0448 (12)
H6A	-0.2908	0.2678	0.5489	0.054*
C7	-0.0708 (5)	0.2028 (3)	0.5526 (3)	0.0392 (10)
H7A	-0.0342	0.2218	0.6193	0.047*
C8	-0.4781 (5)	0.3355 (3)	0.3556 (3)	0.0325 (9)
С9	-0.3939 (5)	0.4347 (3)	0.3850 (3)	0.0353 (10)
C10	-0.2335 (5)	0.4605 (4)	0.4154 (3)	0.0429 (11)
H10A	-0.1533	0.4096	0.4233	0.051*
C11	-0.1965 (6)	0.5636 (4)	0.4337 (4)	0.0490 (12)
H11A	-0.0902	0.5835	0.4554	0.059*
C12	-0.3178 (6)	0.6378 (4)	0.4197 (3)	0.0433 (11)
H12A	-0.2906	0.7066	0.4355	0.052*
C13	-0.5040 (5)	0.5164 (3)	0.3679 (3)	0.0346 (10)
C14	-0.6635 (5)	0.4748 (4)	0.3245 (3)	0.0363 (10)
C15	-0.9247 (6)	0.4701 (5)	0.2532 (4)	0.0583 (15)
H15A	-1.0208	0.5047	0.2307	0.070*
C16	-0.9214 (6)	0.3612 (5)	0.2422 (4)	0.0564 (14)
H16A	-1.0131	0.3252	0.2137	0.068*
C17	-0.7832 (5)	0.3104 (4)	0.2738 (3)	0.0467 (12)

supplementary materials

H17A	-0.7777	0.2384	0.2674	0.056*
C18	-0.6499 (5)	0.3656 (4)	0.3156 (3)	0.0365 (10)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0	0.0423 (18)	0.0440 (19)	0.050 (2)	0.0081 (14)	0.0058 (14)	-0.0014 (15)
N1	0.045	0.045	0.045	0.000	0.006	0.000
C1	0.049 (3)	0.057 (3)	0.073 (4)	0.006 (2)	0.027 (3)	0.003 (3)
N2	0.053 (2)	0.035 (2)	0.038 (2)	-0.0018 (17)	0.0143 (17)	-0.0024 (17)
C2	0.047 (3)	0.023 (2)	0.039 (2)	0.0055 (18)	0.0183 (19)	-0.0003 (18)
C3	0.048 (3)	0.041 (3)	0.043 (3)	0.000(2)	0.018 (2)	-0.011 (2)
N3	0.041 (2)	0.069 (3)	0.041 (2)	0.002 (2)	0.0099 (18)	0.011 (2)
C4	0.045 (3)	0.049 (3)	0.035 (2)	-0.006 (2)	0.010 (2)	-0.012 (2)
C5	0.042 (2)	0.026 (2)	0.035 (2)	-0.0025 (17)	0.0137 (18)	0.0017 (18)
C6	0.060 (3)	0.044 (3)	0.035 (3)	0.015 (2)	0.023 (2)	0.000(2)
C7	0.048 (3)	0.040 (3)	0.031 (2)	-0.002 (2)	0.0088 (19)	0.002 (2)
C8	0.046 (2)	0.028 (2)	0.026 (2)	-0.0012 (18)	0.0140 (18)	-0.0042 (17)
C9	0.048 (2)	0.039 (2)	0.021 (2)	-0.0006 (18)	0.0102 (17)	0.0019 (18)
C10	0.042 (2)	0.041 (2)	0.046 (3)	0.0099 (19)	0.008 (2)	0.009 (2)
C11	0.046 (3)	0.055 (3)	0.046 (3)	-0.005 (2)	0.001 (2)	0.011 (2)
C12	0.059 (3)	0.034 (2)	0.037 (2)	0.007 (2)	0.009 (2)	-0.001 (2)
C13	0.039 (2)	0.041 (2)	0.026 (2)	0.0035 (18)	0.0123 (17)	0.0068 (18)
C14	0.036 (2)	0.048 (3)	0.027 (2)	0.0026 (19)	0.0131 (18)	0.008 (2)
C15	0.036 (3)	0.088 (4)	0.052 (3)	0.010 (3)	0.008 (2)	0.015 (3)
C16	0.033 (3)	0.087 (4)	0.051 (3)	-0.014 (3)	0.012 (2)	0.005 (3)
C17	0.043 (3)	0.059 (3)	0.039 (3)	-0.008 (2)	0.007 (2)	0.009 (2)
C18	0.036 (2)	0.051 (3)	0.024 (2)	0.003 (2)	0.0083 (17)	0.000(2)

Geometric parameters (Å, °)

0—C2	1.375 (5)	С6—Н6А	0.9300
O-C1	1.429 (5)	С7—Н7А	0.9300
N1—C8	1.280 (5)	C8—C9	1.482 (6)
N1—C5	1.418 (5)	C8—C18	1.510 (6)
C1—H1B	0.9600	C9—C10	1.383 (6)
C1—H1C	0.9600	С9—С13	1.392 (6)
C1—H1D	0.9600	C10-C11	1.375 (7)
N2—C13	1.323 (5)	C10—H10A	0.9300
N2—C12	1.331 (6)	C11—C12	1.382 (6)
C2—C3	1.389 (6)	C11—H11A	0.9300
C2—C7	1.397 (6)	C12—H12A	0.9300
C3—C4	1.374 (6)	C13—C14	1.477 (6)
С3—НЗА	0.9300	C14—C18	1.412 (6)
N3—C14	1.328 (5)	C15—C16	1.407 (8)
N3—C15	1.333 (6)	C15—H15A	0.9300
C4—C5	1.389 (6)	C16—C17	1.341 (7)
C4—H4A	0.9300	C16—H16A	0.9300
C5—C6	1.388 (6)	C17—C18	1.372 (6)

C6—C7	1.378 (6)	С17—Н17А	0.9300
C2—O—C1	117.6 (4)	C10—C9—C13	117.2 (4)
C8—N1—C5	120.2 (4)	C10-C9-C8	133.5 (4)
O-C1-H1B	109.5	C13—C9—C8	109.0 (4)
O-C1-H1C	109.5	C11—C10—C9	117.9 (4)
H1B—C1—H1C	109.5	C11—C10—H10A	121.1
O—C1—H1D	109.5	C9—C10—H10A	121.1
H1B—C1—H1D	109.5	C10-C11-C12	119.8 (4)
H1C—C1—H1D	109.5	C10-C11-H11A	120.1
C13—N2—C12	115.3 (4)	C12—C11—H11A	120.1
0	125.3 (4)	N2—C12—C11	123.7 (4)
0	116.2 (4)	N2—C12—H12A	118.1
C3—C2—C7	118.4 (4)	C11—C12—H12A	118.1
C4—C3—C2	120.1 (4)	N2—C13—C9	125.8 (4)
С4—С3—НЗА	119.9	N2—C13—C14	124.9 (4)
С2—С3—НЗА	119.9	C9—C13—C14	109.3 (4)
C14—N3—C15	116.0 (5)	N3—C14—C18	123.3 (4)
C_{3} — C_{4} — C_{5}	122.2 (4)	N3-C14-C13	128.3 (4)
C3—C4—H4A	118.9	C18—C14—C13	108.4 (4)
C5—C4—H4A	118.9	N3-C15-C16	124 2 (5)
C6-C5-C4	117.1 (4)	N3-C15-H15A	1179
C6-C5-N1	122.7 (4)	C16—C15—H15A	117.9
C4-C5-N1	120.0(4)	C17 - C16 - C15	118 5 (5)
C7 - C6 - C5	121.6 (4)	C17—C16—H16A	120.7
C7—C6—H6A	119.2	C15-C16-H16A	120.7
C5—C6—H6A	119.2	C16-C17-C18	1194(5)
C6-C7-C2	120 4 (4)	C16—C17—H17A	120.3
C6—C7—H7A	119.8	C18 - C17 - H17A	120.3
C^2 — C^7 — H^7A	119.8	C17 - C18 - C14	118 5 (4)
N1 - C8 - C9	133.8 (4)	C17 - C18 - C8	133.6 (4)
N1 - C8 - C18	120.6 (4)	$C_{14} - C_{18} - C_{8}$	107.8 (4)
C9 - C8 - C18	105.5(3)		107.0(1)
	105.5 (5)	C12 N2 C12 C0	15(0)
C1 = 0 = C2 = C3	1.4 (6)	C12 - N2 - C13 - C9	1.5 (6)
$C_1 = 0 = C_2 = C_1$	-1/4.4(4)	C12 - N2 - C13 - C14	-1/6.8(4)
0 - 2 - 3 - 4	-1/9.0(4)	C10-C9-C13-N2	-5.1(6)
$C_{1} = C_{2} = C_{3} = C_{4}$	-3.2(6)	$C_8 = C_9 = C_{13} = N_2$	-1/9.8(4)
$C_2 = C_3 = C_4 = C_5$	4.4 (/)	C10-C9-C13-C14	1/3.3 (4)
C_{3} C_{4} C_{5} C_{6}	-5.1 (/)	C8 - C9 - C13 - C14	-1.3(4)
C3—C4—C5—N1	-1/9.1(4)	C15 - N3 - C14 - C18	0.1 (6)
C8 = N1 = C5 = C6	62.1 (6)	C15 - N3 - C14 - C13	1//.1(4)
C8—N1—C5—C4	-124.2 (5)	$N_2 - C_{13} - C_{14} - N_3$	1.3 (/)
C4—C5—C6—C7	4.9 (6)	C9—C13—C14—N3	-177.2 (4)
NI-C5-C6-C7	178.8 (4)	N2—C13—C14—C18	178.7 (4)
C5—C6—C7—C2	-4.1 (7)	C9—C13—C14—C18	0.2 (5)
U-C2-C7-C6	179.2 (4)	C14—N3—C15—C16	0.4 (7)
C3—C2—C7—C6	3.1 (6)	N3—C15—C16—C17	-0.4 (8)
C5—N1—C8—C9	1.7 (7)	C15—C16—C17—C18	0.0 (7)
C5—N1—C8—C18	-174.5 (3)	C16—C17—C18—C14	0.4 (6)

supplementary materials

N1-C8-C9-C10	11.8 (8)	C16-C17-C18-C8	-178.2 (4)
C18—C8—C9—C10	-171.6 (4)	N3-C14-C18-C17	-0.5 (6)
N1—C8—C9—C13	-174.8 (5)	C13-C14-C18-C17	-178.0 (4)
C18—C8—C9—C13	1.8 (4)	N3-C14-C18-C8	178.5 (4)
C13—C9—C10—C11	4.6 (6)	C13—C14—C18—C8	0.9 (4)
C8—C9—C10—C11	177.6 (4)	N1-C8-C18-C17	-5.8 (7)
C9—C10—C11—C12	-1.1 (7)	C9—C8—C18—C17	177.0 (4)
C13—N2—C12—C11	2.6 (6)	N1-C8-C18-C14	175.5 (4)
C10-C11-C12-N2	-2.8 (7)	C9—C8—C18—C14	-1.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C12—H12A···O ⁱ	0.93	2.42	3.337 (6)	169

Symmetry codes: (i) -x, -y+1, -z+1.

Fig. 1

Fig. 2

